A Paving System
We Can All Live With®
• Lower Construction & Life Cycle Costs
• Pedestrian Friendly
 AquaPave® can provide a flat smooth surface
 with narrow voids that is free of loose aggregates
• Disability Friendly
 Meets design guidelines recommended by the
 Americans with Disabilities Act (ADA)
• Eliminates Surface Runoff
• Reduction of Pollutants
 in the Environment
• Water Harvesting
• Traffic Calming
• Geothermal Systems
• Earn Up To 12 LEED® Points
The Problem
Increasing urbanization generates excess stormwater runoff from impervious surfaces. What were once farmers' fields or native forests are now subdivisions, shopping malls and roadways. This strains stormwater drainage systems, overloading them during periods of heavy rain. As a result, downstream areas are encountering more frequent and intense flooding. In addition, groundwater elevations are dropping and streams are experiencing increased bank erosion and sedimentation.

With respect to water quality, heavy metals, hydrocarbons, nutrients, rubber, dust and sediment collect on impervious surfaces during dry weather. These accumulations are flushed away during the next rainstorm and enter downstream watercourses. The "first flush" is the initial period of a rainstorm where pollutant concentrations are highest. These pollutants enter streams, lakes, and bays affecting the quality of receiving waters for drinking, recreation, and fishing. Treasured fish species such as salmon, and other eco-systems are negatively impacted by these events.

The Solution - AquaPave® Permeable On-Site Stormwater Source Control System
Regulatory agencies have responded to the problem by requiring developers to utilize Best Management Practices (BMPs) to deal with stormwater on-site; in short, no impacts are to be imposed on downstream receptors. The U.S. Environmental Protection Agency has recognized permeable pavements as a BMP suitable for improving stormwater management.

The AquaPave® Permeable On-Site Stormwater Source Control System is an important first effort to reduce excess stormwater runoff quantities and improve water quality. The AquaPave® system allows commonly recurring rainstorms to infiltrate through a permeable concrete pavingstone surface into a clear crushed open-graded aggregate base before being released into storm sewers or watercourses. Known as permeable interlocking concrete pavement, the system acts as an infiltration facility for the storage, treatment, and improvement of released water.

All AquaPave® pavers and slabs provide drainage through vertical channels and allow water through the surface at a rate of approximately 2.5 litres/sec/m². This is reduced to 1.25 litres/sec/m² due to the effects of the geotextile. If the soil subgrade and underlying geology are suitable, some or all of the water can infiltrate directly into the subgrade, thereby substantially reducing outflow rates. Alternately, the surface water can be temporarily stored in the sub-base before being slowly released into the receiving water system. The AquaPave® system helps to clean and improve the quality of runoff water by filtration through the base and microbial action. In many instances, the outflow can be re-used for irrigation of domestic and commercial landscapes.

Applications
Consisting of permeable interlocking concrete pavers and a clear crushed open-graded aggregate base, the AquaPave® Permeable On-Site Stormwater Source Control System is suitable for parking lots, residential driveways, commercial entrances, overflow parking areas, boat ramps, sidewalks, plazas, and low-speed residential roads.

Most municipalities strive to manage runoff from a range of storms with the intent of reducing runoff volumes and peak flows to those from pre-development conditions. In addition, many U.S. cities must obtain permits from the National Pollutant Discharge Elimination System (NPDES) administered by state and federal agencies. The applications for permits must include post-construction BMPs for the reduction of runoff and pollutants. As an effective BMP, the AquaPave® Permeable On-Site Stormwater Source Control System can be part of a municipality's stormwater management plan and help achieve compliance with the NPDES regulations.
When designing an AquaPave® system, the following conditions need to be determined by a qualified design professional:

1. The range of design storms and antecedent moisture conditions that will be managed by the system. These are commonly recurring rain storms.
2. The total area contributing to the AquaPave® system. Typically this is no greater than a 5:1 ratio based on the standard design as shown below.
3. The amount of water that will enter the system and be stored in the base, treated, filtrated, and/or released over a specific time, typically between 24 and 72 hours.
4. The long-term infiltration capacity of the soil subgrade.
5. Exfiltration options for the base is guided by the determinations in conditions 1 through 4.
 Exfiltration options include:
 - Full Exfiltration into the soil subgrade with no underlying drain pipes.
 - Partial Exfiltration, i.e., some infiltration into the soil subgrade and some detention with drainage through underlying pipes.
 - No Exfiltration where an impermeable liner captures the stored runoff and prevents its infiltration to the soil. This is a detention facility with drainage through underlying pipes.
6. Means to handle rainstorms that exceed the storage capacity of the base.
7. If a vehicular application, the base thickness required to support the anticipated traffic loads.

Key Components of the AquaPave® Permeable On-Site Stormwater Source Control Systems

ACQUA PAVE® ENGINEERED JOINT STABILIZER APPLIED BETWEEN PAVERS

Concrete curbing

Inbitex® Geotextile

Optional SC Membrane® HDPE (high density polyethylene) or EPDM (ethylene propylene diene monomer)

Association Performance SC1000 woven geotextile

AP SC1000 woven geotextile

Optional SC Intergrid® as specified by Engineer

Inbitex® Geotextile

AP SC1000 woven geotextile

5 mm (1/4") clear crushed open-graded bedding course 50 mm (2") thick

Note: Be sure to verify design requirements of applicable regulatory agencies.
Typical Systems and Exfiltration Options *(Modify to site conditions)*

Full Exfiltration System

- Galvanized steel or PVC screen fastened over inlets
- Curb/edge restraint with cut-outs for overflow drainage
- Overflow pipe(s) - diameter, location and quantity vary with design
- Outfall pipe(s) - sloped to storm sewer or stream
- AquaPave®
- Inbitex® Geotextile
- AP SC1000 Woven Geotextile on bottom and sides of open-graded base
- Optional SC Intergrid®

Partial Exfiltration System

- Galvanized steel or PVC screen fastened over inlets
- Curb/edge restraint with cut-outs for overflow drainage
- Overflow pipe(s) - diameter, location and quantity vary with design
- Lateral perforated pipes spaced and sloped to drain all stored water
- Outfall pipe(s) - sloped to storm sewer or stream
- AquaPave®
- Inbitex® Geotextile
- AP SC1000 Woven Geotextile on bottom and sides of open-graded base
- Optional SC Intergrid®

No Exfiltration System

- Galvanized steel or PVC screen fastened over inlets
- Curb/edge restraint with cut-outs for overflow drainage
- Overflow pipe(s) - diameter, location and quantity vary with design
- Lateral perforated pipes spaced and sloped to drain all stored water
- Sump Pump
- Soil subgrade sloped to drain
- AquaPave®
- Inbitex® Geotextile
- AP SC1000 Woven Geotextile on bottom and sides of open-graded base
- Optional SC Intergrid®

Typical Residential Driveway/Sidewalk Construction

- 63 mm (2-1/2") clear crushed open-graded lower sub-base thickness as specified by a Design Professional

On all designs:
- Open-graded base thickness varies depending on water management and/or structural requirements.
- For pedestrian sidewalks or residential driveway applications only the 20mm clear crushed open-graded aggregate, upper sub-base is required. This should be a minimum of 6".
While the colours shown here are represented as accurately as possible, they should only be used as a guide. Actual samples should be viewed before making a final colour selection.

*For best results, pavers should be installed from several pallets to ensure color consistency, especially with multi-color blends.
Abbotsford Concrete Products offers AquaPave® paving units for use over full, partial, or no exfiltration base designs.

AquaPave® in Venetian Series and Standard is designed for areas subject to constant vehicle traffic such as parking lots and low speed roads. Old Country Stone is suited for single family residential driveways and for pedestrian areas.

All paving units are manufactured to meet ASTM C936/C936M-15, Standard Specification for Solid Concrete Interlocking Paving Units or ASTM C1782/C1782M-16 Standard Specification for Utility Segmental Concrete Paving Slabs for projects in the United States. For projects in Canada, paving units will meet CSA A231.1/A231.2-14, Precast Concrete Slabs/Precast Concrete Pavers.

Our patented system, provides drainage through openings in the surface created by vertical slots on the sides of the units. These allow water to enter and flow at rates as high as 354 in./hour (9000 mm/hr or 9000 litres/m²/hr).

Please call 1.800.663.4091 for color availability.
Benefits

Lower Construction Costs
In conventional drainage design, infiltration and detention facilities are separate from impervious parking lots and pedestrian areas. AquaPave® On-Site Stormwater Source Control System combines the parking, infiltration and detention facilities into one location, allowing more space on the site for income-generating buildings. With the water detention facilities located below ground, we eliminate public safety concerns associated with the accidental drownings of children. This also eliminates the breeding areas for insect born diseases such as West Nile Virus.

Experience has shown that total construction costs are lower in most AquaPave® systems than conventionally drained surfaces. For some designs there will be cost savings through the reduction or elimination of typical stormwater management infrastructure, including collection works, water retention ponds, treatment systems (e.g. oil/water separators), and associated appurtenances.

Considering the ever increasing cost of oil, AquaPave® is becoming comparable in unit price to other traditional paving systems. Couple this with the increased design life equivalent and you have a superior, more aesthetically pleasing surface at a lower cost. With its flat continuous surface, AquaPave® accepts pavement marking materials such as paint and thermal plastic tapes.

Reduction of Runoff
With an open surface area of about 5%, the openings can infiltrate as much as 354 in./hr (9000 mm/hr or 9000 litres/m²/hr). The infiltration rate of the clear crushed open-graded aggregate used for the bedding and base is similar. For design purposes, a conservative 90% reduction in efficiency is generally assumed for infiltration facility design, due to the build-up of sediment over years of service. When considering a 90% reduction of initial infiltration as a typical design assumption, the AquaPave® Stormwater Source Control System will still capture, treat, infiltrate, and filter rains of over 35.4 in./hr (900 mm/hr or 900 litres/m²/hr). This includes the commonly recurring storms, which generate the most pollution.

Recharging the Groundwater Table
Approximately 30% of water entering the system is lost through evaporation and does not leave in the form of exit water. With “Full Exfiltration” and “Partial Exfiltration” systems, some if not all of the rain water that falls on the paved area is allowed to infiltrate into the ground and recharge the local groundwater table. Groundwater is not only a primary source of drinking water, but it also maintains the base flow characteristics of our watercourses between precipitation events.

Roof Water Management
Roof water can be discharged into the sub-base. With gravity fed drainage it is recommended that the water is introduced into the sub-base by means of a sump with a manhole cover adjacent to the paved area. Any debris can be easily caught and cleared. The water is then dispersed within the system via a permavoid distribution tank or perforated outlet pipe. With siphonic drainage, a special chamber is used to disperse the water within the sub-base.

<table>
<thead>
<tr>
<th>Pollutant Category</th>
<th>Solids</th>
<th>Nutrients</th>
<th>Bacteria</th>
<th>Dissolved oxygen demands</th>
<th>Metals</th>
<th>Oils (PAHs)* SOCs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil erosion</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Cleared vegetation</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Fertilizers</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Human waste</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Animal waste</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Vehicle fuels & fluids</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Fuel combustion</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Vehicle wear</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Industrial/household chemicals</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Industrial processes</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Paints & preservatives</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>Pesticides</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
</tbody>
</table>

Common sources of pollution in urban stormwater runoff
PAHs = polynuclear aromatic hydrocarbons
SOCs = synthetic organic compounds
ref. 1

<table>
<thead>
<tr>
<th>Pollutant Category</th>
<th>0.5 in. (13mm) of Runoff per Impervious Acre</th>
<th>1.0 in. (25mm) of Runoff per Impervious Acre</th>
<th>2-year Design Storm Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total suspended solids</td>
<td>60-80</td>
<td>80-100</td>
<td>80-100</td>
</tr>
<tr>
<td>Total phosphorous</td>
<td>40-60</td>
<td>40-60</td>
<td>60-80</td>
</tr>
<tr>
<td>Total nitrogen</td>
<td>40-60</td>
<td>40-60</td>
<td>60-80</td>
</tr>
<tr>
<td>Biological oxygen demand</td>
<td>60-80</td>
<td>60-80</td>
<td>80-100</td>
</tr>
<tr>
<td>Bacteria</td>
<td>60-80</td>
<td>60-80</td>
<td>80-100</td>
</tr>
<tr>
<td>Metals</td>
<td>60-80</td>
<td>60-80</td>
<td>80-100</td>
</tr>
</tbody>
</table>

Projected average annual pollutant removal capability of infiltration areas in percent
Note: These rates are not based on actual data since monitoring what enters and leaves any infiltration facility is difficult to measure. This data is based on land application of pollutants and their treatment through soils.
ref. 2

<table>
<thead>
<tr>
<th>Percentage of heavy metals removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>% removed</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>95</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Data provided by the kind permission of Dr. Chris Jefferies and Fiona Napier.
Urban Water Technology Centre, University of Alberta, Dundee.
ref. 3
Filtering and Treatment of Pollutants

Studies of permeable interlocking concrete pavement have shown substantial reduction of non-point source pollutants in runoff. The clear crushed open-graded aggregate base has a storage volume of at least 30%. This storage capacity enables a decrease in peak flows and treatment of pollutants, especially nutrients and total suspended solids prior to drainage of the water from the base through drain pipes.

Management of Oil Contaminants

"The runoff from parking lots represents the biggest single source of tonnages of oil going into the ocean" – Brian Giroux, Port Hardy Forum on the Development of Off-shore Oil Exploration & Drilling.

Oil drippings and related hydrocarbons are typically digested within the base through filtering and microbial action. Research by Coventry University, England on microbial action has shown that the AquaPave® system is capable of bioremediation at the rate of 400 grams (0.88 lbs.) of oil per square metre (approx. 11 ft²) per year. Severe hydrocarbon contamination can be dealt with by feeding the affected areas with slow release fertilizer.

An additional advantage is that water exiting the system has a pH of approximately 7.5. (In most urban areas rainfall has a pH of approximately 4.5)

Cumulative Applied Oil and Oil in Outflow

![Cumulative Applied Oil and Oil in Outflow](image)

Wesbrook Shopping Centre - courtesy of Stone Age Cobblestones
Pedestrian Friendly

The AquaPave® patented design was created to accommodate all types of pedestrian traffic. Unlike other permeable pavements, the AquaPave® system does not incorporate loose aggregates on its surface, making it safer and more comfortable to walk on, even with high heels. The result is a flat, smooth walking surface for customers and employees, completely free of water build up. AquaPave® is ideal for high foot traffic areas like building entrances, parking lots, inspection areas, and bike paths.

LEED® Green Building Rating System

The Leadership in Energy and Environmental Design (LEED®) rating system uses a point system to recognize environmentally conscious site and building designs. LEED® is a design guideline used by some agencies for certification. It is a voluntary, consensus-based rating system to encourage sustainable construction sites, and buildings. In the USA it is administered by the U.S. Green Building Council (www.usgbc.org) and in Canada by the Canadian Green Build Council (www.cagbc.org). More information can also be obtained in ICPI Tech Spec 16 (Achieving LEED® Credits with Segmental Concrete Pavement).

The AquaPave® Permeable On-site Stormwater Source Control System can be eligible for earning points under LEED®.

<table>
<thead>
<tr>
<th>LEED Credit Category</th>
<th>Available Points</th>
<th>Potential Points Using AquaPave® System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrative Process</td>
<td>1-5</td>
<td>1 - 5 Points</td>
</tr>
<tr>
<td>Sustainable Sites:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Open Space</td>
<td>10</td>
<td>1 point</td>
</tr>
<tr>
<td>• Rain Water Management</td>
<td>3 points</td>
<td></td>
</tr>
<tr>
<td>• Heat Island Reduction</td>
<td>2 points</td>
<td></td>
</tr>
<tr>
<td>Water Efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outdoor Water Use</td>
<td>Prerequisite (no points)</td>
<td></td>
</tr>
<tr>
<td>Materials & Resources:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Building Product Disclosure & Optimization</td>
<td>13</td>
<td>1 point</td>
</tr>
<tr>
<td>– Environmental Product Declarations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Building Product Disclosure and Optimization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Sourcing of Raw Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Building Product Disclosure and Optimization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Material Ingredients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Construction & Demolition Waste Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Innovation</td>
<td>6</td>
<td>6 points</td>
</tr>
<tr>
<td>• Regional Priority</td>
<td>4</td>
<td>4 points</td>
</tr>
<tr>
<td>Range of potential points</td>
<td>45 – 50</td>
<td>25 – 30</td>
</tr>
</tbody>
</table>
Access for People With Disabilities

AquaPave® paving units have gaps less than 13 mm wide, which meet the recommendations of the Americans with Disabilities Act Accessibility Guidelines (ADAAG). Since AquaPave® does not need to be sloped to drain, access for the disabled can be made easier. AquaPave® provides a safe, smooth surface free of loose aggregates ensuring a reliable footing for the elderly or disabled using canes, crutches, walkers, or wheelchairs.

Slip and Skid Resistance

The ADAAG recommends that the slip resistance, expressed as a minimum coefficient of friction, be 0.6 for accessible routes and 0.8 for ramps. Testing conducted on behalf of the ICPI has verified that pavers, with the exception of pavers with polished surfaces, meet these guidelines. Vehicular skid resistance tests have demonstrated that stopping distances are shorter at speeds up to 40 MPH than either asphalt or typical concrete surfaces. Since the surface of the AquaPave® system consists of concrete pavers, the same resistance to skidding and shorter stopping distances can be expected. Couple this with the rapid infiltration of water, and the result is a reduction in accidents and increased safety.
Design Life

AquaPave® has a design life equivalent to that of conventional interlocking concrete pavers, typically 30 to 40 years. Should the pavers become damaged or cracked, they can be removed and replaced with new ones. The infiltration rate, storage capacity, and pollution reduction performance of the base depends on the amount of sediment that enters it. Therefore, control of sediment entering the system during and after construction is vital to continuing infiltration performance. When outside sources of sediment are kept from the pavement, a minimum of 25 to 30 year life can be expected. When the rate of outflow is significantly diminished, the AquaPave® pavers are removed, the clear crushed open-graded bedding and the Inbitex® geotextile are replaced, and the AquaPave® pavers reinstated.

Infiltration facilities and permeable interlocking concrete pavements such as AquaPave® are conservatively designed with the assumption of a 90% reduction in the infiltration rate. Using this as a worse case scenario, 10% of the initial infiltration rate of 354 inches (9000 mm) per hour would be 35.4 inches (900 mm) per hour. This infiltration rate would still be 18 times greater than 2 in. (50 mm) per hour system infiltration rate, typical to many designs.

Professor John Argue of the Urban Water Resources Centre at the University of South Australia in Adelaide has conducted extensive research on the siltation of the pavers and bedding layer. His research assumed rainfall of 22.8 inches (580 mm) per year with a loading of 200 parts per million of silts. This is a sediment loading similar to what would be found in an established urban catchment. His conclusion was that even after a thirty year life, the permeability of the surface was only reduced by 25%. (For a copy of this research, please contact us.)

Design Considerations & Maintenance

All pavement systems require regular maintenance. With the AquaPave® system, sediment that collects in the surface openings should be removed by vacuuming a minimum of twice a year. It is recommended that this take place in the early spring and late fall during a dry period. In most cases this operation is already a part of a regular maintenance program.

AquaPave® surfaces can be cleaned by pressure washing without risking damage to its components or dislodging and spreading loose aggregates like in other permeable paver systems. This makes it ideal for high foot traffic areas such as mall entrances and sidewalks.
Although there is a sizable factor of safety in terms of infiltration capabilities through the pavers, there is always the chance that sheeted ice or packed snow between plowing events could plug the system; should this occur, some surface water runoff would be expected. Every project should therefore have one or more separate spillways cut into the concrete curbs to allow for these conditions.

Design consideration should also be given to ensuring that soft landscaping is retained to prevent migration of softscape materials (e.g. topsoil) into the AquaPave® surface. Doing so will significantly help to maintain the integrity of the system.

AquaPave® doesn’t incorporate loose aggregates or turf as an integral component of its system, therefore, mechanical snow removal methods are very effective on its flat continuous surface. Other types of permeable pavements may have to rely on chemical de-icing due to their shaped top surface. This may be counter to the water handling portion of the installation.

Settlement up to 25 mm (1 in.) in the surface, as in all segmental interlocking systems, can be easily corrected. First, remove the area of pavers affected, then fill and compact the clear crushed open-graded aggregate used under the paving units. AquaPave® can then be reinstated and compacted with a plate compactor. Likewise, broken pavers can simply be removed, replaced and compacted. Unlike other paving systems, AquaPave® can be immediately reopened for use.

Heaving from freezing water in the crushed stone base is generally not a concern. There is typically sufficient void space within the aggregate to accommodate the 10% expansion in the volume of water when it freezes.

An observation well is recommended in all installations of the AquaPave® Permeable On-Site Stormwater Source Control System. The well is typically a 150 mm (6 in.) diameter perforated pipe, placed near the lowest elevation of the pavement, out of the way of vehicular traffic. The top of the well can be under the pavers, hidden from view and covered with a secure lid. The well enables monitoring of outflow and sedimentation after storms, as well as an opportunity to sample and test water quality. Outflow should be monitored at least once a year after a large storm. Every project should have separate overflow drains or spillways to accommodate the saturation conditions that occur in high intensity and/or long duration rain storms.
AquaPave® In Conjunction With Conventional Interlocking Concrete Pavers

- Curb/edge restraint with cut-outs for overflow drainage
- AquaPave® 5 mm (1/4”) clear crushed open-graded bedding course
- Concrete curb restraint
- Upper Sub-base 20 mm (3/4”) crushed open-graded aggregate
- Standard Pavers
- Optional SC Intergrid®
- SC Membrane® (HDPE or EPDM)*
- AP SC1000 Woven Geotextile*
- Asphalt Pavement
- Inbitex® Geotextile*
- Lower Sub-base 63 mm (2-1/2”) crushed open-graded aggregate (commonly referred to as rail ballast)

* Inbitex®, AP SC 1000 and SC Membrane® brought up to curb and cut off flush with surface of AquaPave®

All conversions from Metric to Imperial are approximate. Illustrations are not to scale.
AquaPave® With Exfiltration System on a Slope

- Inbitex® Geotextile
- AP SC1000 Woven Geotextile*
- 5 mm (1/4”) clear crushed open-graded aggregate — bedding course
- 20 mm (3/4”) clear crush open-graded aggregate — upper sub-base
- 63 mm (2-1/2”) clear crush open-graded aggregate — lower sub-base (commonly referred to as rail ballast)

Optional SC Intergrid®

Inbitex® and impermeable SC Membrane® brought up side of curb and cut off flush with the surface of the AquaPave® pavers.

- 10 metre centres 200 mm high concrete baffles 110 mm PVC-U unperforated pipe
- Face of concrete haunching must be shovel smooth

Hydraway fin drain connected to 110 mm PVC-U pipe with AquaPave® top hat seal

Blue dots indicate additional water entering the system through surface

Where a tanked system is desired, place an impermeable SC Membrane® (HDPE or EPDM) on the AP SC1000 Woven Geotextile®.
The AquaPave® Geothermal System is capable of reducing a building’s reliance on gas and/or electricity for heating and cooling by up to 50%. The patented system for heat capture from stored water can be used to generate 6 kilowatts of energy from approximately 100 sq metres (1100 sq feet) of AquaPave® for indoor climate control.

A heat pump moves the heated or cooled water through either underfloor heating or radiators.

Heating
The heat pump reverses its operation, extracting heat from the earth and delivering it to the building’s HVAC system.

Cooling
Heat is extracted from the building and transferred by the heat pump circulating through the ground loop. As water circulates, it gives up this heat into the cooler earth. The cooled water then returns to the heat pump to pick up more heat.
AquaPave® Geothermal System

In one hour the sun imparts sufficient solar power to earth to support its total energy needs for one year.

Most places in the world, the temperature of the ground from 1 metre (3 ft) to 100 metres (330 ft) depth is approximately 10°C (50°F), every day of the year.

The AquaPave® Geothermal System is capable of reducing a building’s reliance on gas or electricity for heating and cooling. This system combines the technology of the permeable pavement with geothermal technology using a patented sub-base and ground source heat pump (GSHP). The heat pump moves heated water through either underfloor heating, enlarged radiators or by fan coils to heat the building. Cooling is simply achieved by reversing this cycle.

The typical payback period on a standard system when balanced and operated correctly is approximately 6 years, after which, other than the cost of running the heat pump, heating and cooling costs are completely removed. There is no requirement for the burning of fossil fuels in this system as it uses environmentally friendly and sustainable methods. This can reduce Carbon Dioxide emissions by over 50%, and more importantly can show a reduction of up to 50% on energy bills.

As with our other AquaPave® systems, the AquaPave® Geothermal System also combines parking, infiltration, and detention facilities, into one location, allowing more space on the site for income-generating buildings.

The AquaPave® Geothermal system works by utilizing the voided sub-base to generate sufficient energy to allow the exchange of heat into buildings during cold periods and out of the building in the summer months. This is achieved by the pump using the constant temperature of the ground surrounding the installation which is typically used in summer months as a heat sink, and then in colder times as a source of heat.

There is an ambient temperature in the subgrade of 10°C (50°F) and it is the temperature differential between the loop and the ground that creates the energy produced within the refrigerant that affects the heat exchanger (GSHP). The ground source heat pump acts in a similar manner to a refrigerator, a series of collector loops are set horizontally within the sub-base. It is the refrigerant in the loop that passes the heat to the pump, this then goes through a compressor that channels the heat into the building via under floor heating, radiators or fan coils.

Although the pump is powered by electricity, this use of electricity is mitigated by a performance coefficient in excess of 4:1 i.e. you will get four units of energy for every one you put in, therefore reducing the overall use of non sustainable energy.

6,500 m² of our geothermal system supplying 580 kW of heating and 200 kW of cooling to the 2,700 m² office building

Benefits of the AquaPave® Geothermal System:

• Save up to 50% on fuel bills - presenting a payback within the first 5-6 years.
• Low maintenance
• Low noise
• Reduces CO₂ emissions up to 50%
• Cuts water bills by an average of 50% - water stored underground can provide a supply for re-use within the home, i.e. toilets, car washing and irrigation.
Water Harvesting
The AquaPave® On-site Stormwater Source Control System collects water from all impermeable surfaces, roofs, sidewalks and parking facilities.

All water entering the system through the paved surface is treated and cleaned by the Inbitex® geotextile layer before storage. (see page 6 & 7)

The filtered and treated water exiting the AquaPave® system can be re-used for non-potable uses such as domestic or commercial irrigation. In fact, some schools and youth hostels are currently using this non potable water for the flushing of lavatories. This conserves and economizes on water usage and charges in some localities. (Water quality has been tested at Edinburgh and Coventry Universities and independently verified by Severn Trent Water Authority. See page 23.)

These practises may also qualify for additional LEED® points.

For example, harvested, treated water can be used in the washing of vehicles and then re-enter the permeable surface to be recycled.

Sanders Garden World, an example of using reclaimed water from a tanked system to provide plant irrigation.

Vancouver Convention Centre
Home of the 2010 Olympic Torch - courtesy of Holland Landscapers
Root System Maintenance

Availability of air and water to the root systems of existing or newly planted vegetation, particularly trees, is key to their survival and growth. When building near trees, the previous BMPs were to install a grate around the perimeter of the tree to allow for direct infiltration, or to install a subgrade irrigation system.

It has been proven that the AquaPave® system can be used successfully with load bearing tree soils. This allows the pavers to be installed right up to the border of the tree pit, which increases the available parking area, while still allowing air and water to reach the root structure. This practise is not possible with conventional paving.

In applications where additional water is desired within the root system, it is possible to divert the overflow from a “Partial Exfiltration” or “No Exfiltration” system to the root zone (see below, left side), or even create an artificial tanked system (see below, right side).
1. Placing the AP SC1000 woven geotextile with the specified overlap.

2. Placing and spreading of the clear crushed open-graded lower Sub-base aggregate without wrinkling or folding the geotextile.

3. Compaction of the lower Sub-base.

4. Placing and spreading the clear crushed open-graded upper Sub-base.

5. Compaction of the clear crushed open-graded upper Sub-base.

6. Placing the Inbitex® geotextile.

7. Placing and spreading of the 5mm clear crush bedding material.

8. Compaction of the 5 mm clear crushed open-graded bedding material.

9. Loose screeding of the 5mm clear crush open-graded Bedding Course.

10. Placing the AquaPave® pavers.

11. Initial compaction of the AquaPave® pavers.

12. Spreading and sweeping in of the AP Engineered Joint Stabilizer.

13. Close-up view of the joints with AP Engineered Joint Stabilizer applied before final compaction.

15. Close-up view of the joints with AP Engineered Joint Stabilizer applied after final compaction.
1. Excavation of sub-grade, removing any organic material.

2. AP SC1000 geotextile is rolled out and fastened to sub-grade.

3. Clear crushed open-graded aggregate lower Sub-base is placed, followed by grading and compaction.

4. Paver restraints are placed.

5. Clear crushed open-graded aggregate upper Sub-base is placed.

6. Upper Sub-base is then graded to elevation and compacted.

7. Inbitex® is placed followed by the 5 mm clear crushed open-graded Bedding Course.

8. AquaPave® pavers are delivered to site, prearranged on pallets.

9. AquaPave® is placed using mechanical laying equipment, this can increase production to 8,000-10,000 sq. ft. per day with a standard crew.

10. All cuts must be made with a masonry saw.

11. AP Engineered Joint Stabilizer is applied and swept into place.

12. After final compaction the paved area is available for immediate use.
AquaPave® Permeable Interlocking Concrete Pavement

Note: This guide specification is for the construction of an AquaPave® permeable interlocking concrete paver system which is designed to allow for the infiltration, detention and release of stormwater from a permeable, open-graded base. Components covered under this specification include AP SC1000 Woven Geotextile, SC Membrane®, SC Intergrid®, permeable clear crushed open-graded sub-base, Inbitex® Geotextile, Bedding Layer, AquaPave® Pavers and AquaPave® Engineered Joint Stabilizer, which are generic to all AquaPave® Systems. Additional specifications are required where drain pipes, geogrid and/or an impermeable liner are used. The text below must be edited to suit specific project requirements. It will require review by a qualified civil or geotechnical engineer, or landscape architect familiar with the site conditions and local materials. Edit this specification as necessary to identify the design professional in the General Conditions of the Contract. This guide specification is intended for use in the U.S. or Canada and should be edited to fit terms and standards appropriate to each region.

PART 1 GENERAL

1.01 SUMMARY
A. Section Includes:
1. AquaPave® Permeable Concrete Pavers.
3. Clear crushed open-graded aggregate Bedding Course.
4. Inbitex® Geotextile.
5. Clear crush open-graded sub-base materials.
6. [SC Intergrid® - Base reinforcement grid].
7. AP SC1000 Woven Geotextile.
8. [SC Membrane® - Impermeable liner].

Note: Curbs will typically be precast or cast-in-place concrete. Plastic edging with steel spikes can be used if the spikes are driven into substantial soils and are not driven into any of the open-graded drain rock or pierce any portion of the water containment system. Plastic edging should not be used if the spikes are driven into substantial soils and are not driven into any of the open-graded sub-base materials.

1.02 RELATED SECTIONS
A. Section Includes:
1. Curbs.
2. Section - Stabilized aggregate base.
4. Section - Impermeable liner.
5. Section - Edge restraints.
6. Section - Drainage pipes and appurtenances.
7. Section - Earthworks/excavation/soil compaction.

1.03 REFERENCES
A. American Society of Testing Materials (ASTM)
5. D 448, Standard Classification for Sizes of Aggregate for Road and Bridge Construction.
6. D 698, Test Methods for Moisture Density Relations of Soil and Soil Aggregate Mixtures Using a 5.5-lb (2.49 kg) Rammer and 12 in. (305 mm) drop.
7. D 1557, Test Methods for Moisture Density Relations of Soil and Soil Aggregate Mixtures Using a 10-lb (4.54 kg) Rammer and 18 in. (457 mm) drop.
10. D 2922, Standard Test Methods for Density of Soil and Soil Aggregate In-Place by Nuclear Methods (Shallow Depth).

B. Canadian Standards Association (CSA)
1. A231.2-14, Precast Concrete Pavers.
2. A231.1-14, Precast Concrete Paving Slabs.

1.04 SUBMITTALS
A. In accordance with Conditions of the Contract and Submittal Procedures Section.
B. Site Plan - indicate the following: area of AquaPave® Paver installation; perimeter conditions; stormwater run-on area; and, layout, patterns and color arrangements.
C. Installation details – provide details for each of the following: junction with other materials; expansion and control joints; layout, pattern, and relationship of paving joints to fixtures; geotextile panel installation drawing; and, project formed details.
D. AquaPave® Engineered Joint Stabilizer, Bedding Course and Sub-base (upper and lower):
1. Sieve analysis of aggregates per [ASTM C 136] [CSA A23.2A].
2. Durability of aggregates using Micro-Deval Degradation per [ASTM D 6928] [CSA A23.2A].
3. Percentage of angular and sub-angular particles per [ASTM D 2488].
4. Minimum 3 lb (2 kg) samples of sub-base, base and bedding aggregate materials.
E. Site soils report including: in-situ density test reports; soil classification(s); infiltration rate(s) measured on-site under compacted conditions; and, recommendations on suitability of native soils for the intended project.
F. Erosion and sediment control plan.
G. Stormwater management (quality and quantity) calculations.
H. Permeable concrete pavers:
1. Manufacturer’s product catalog sheets with specifications.
2. [Four] representative full-size samples of each paver type, thickness, color, and finish. Submit samples indicating the extremes of color expected in the finished installation. Note that accepted samples become the standard of acceptance for the work of this Section.
3. Laboratory test reports certifying completeness of the concrete pavers [slabs] with [ASTM C 936/C936M-15] [CSA A231.1-14] [CSA A231.2-14].
4. Copy of ICPI Certified Manufacturer Certificate.
5. Manufacturer’s material safety data sheets for the safe handling of the specified materials and products.
I. Geotextiles:
1. Manufacturer’s product catalog sheet with specifications.
2. One 0.5 x 0.5 m (18 x 18 in) panel of each Inbitex®, AP SC1000 geotextile, SC Intergrid® geogrid and/or SC Membrane® for inspection and testing. The sample panels shall be uniformly rolled and shall be wrapped in plastic to protect the material from moisture and damage during shipment. Samples shall be externally tagged for easy identification. External identification shall include: manufacturer; product type; product grade; lot number; and, physical dimensions.
J. Paver Installation Subcontractor:
1. Statement of Installer Qualifications: Submit list of comparable projects completed by installer. Include list of completed projects with project names, addresses, names of Architect/Engineer and Owners with contact information, and dates of construction.
2. Copy of current ICPI Concrete Paver Installation Certification Program® Level I Certificate, or Level II Certificate if project is to be mechanically installed, for site supervising personnel.
3. A letter of assurance or copy of Certificate from the manufacturer stating that the site supervising personnel is an AquaPave® Approved Installer.
4. Written Method Statement and Quality Control Plan that describes material staging and flow, paving direction and installation procedures, including representative reporting forms that ensure conformance to the project specifications.

1.05 QUALITY ASSURANCE
A. Installer Qualifications: Engage an experienced, certified installer who has successfully completed permeable pavement installations similar in design, material, and extent indicated for this project.
B. Review paver installation subcontractor’s Method Statement and Quality Control Plan with a pre-construction meeting of representatives from the manufacturer, paver installation subcontractor, general contractor, engineer and/or owner’s representative.
C. Field-constructed Mock-up:
1. Install 3 x 3 m (10 x 10 ft) area with Geotextiles, Sub-base, Bedding Course, AquaPave® Engineered Joint Stabilizer and Pavers.
2. Use area to determine surcharge of the bedding layer, joint sizes, lines, laying pattern(s), color(s), and texture of the job.

GUIDE SPECIFICATIONS FOR CONSTRUCTION OF THE AQUAPAVE® PERMEABLE ON-SITE STORMWATER SOURCE CONTROL SYSTEM
3. Use the area as the standard to judge the remaining work.
4. Subject to acceptance by the owner, mock-up may be retained as part of the finished work.
5. If mock-up is not retained, remove and dispose of mock-up.

1.06 DELIVERY, STORAGE, AND HANDLING

A. Concrete Pavers:
1. Comply with manufacturer’s ordering instructions and lead-time requirements to avoid construction delays.
2. Coordinate delivery of paving stones to minimize interference with onsite works, and normal use of buildings, roads and structures adjacent to works.
3. Deliver concrete pavers to the site palletized for transfer by forklift or clamp lift. Maintain manufacturer’s original, unopened, undamaged packaging with identification labels intact.
4. Unload pavers at job site in the location designated by the Installation Contractor and in such a manner that no damage occurs to the product or existing construction.

B. Imported Soils:
1. Handle and transport material to avoid segregation, contamination and degradation.
2. Keep different materials sufficiently separated as to prevent mixing. Do not dump or store one material on top of another unless it is part of the installation process.
3. Cover material with waterproof covering if needed to prevent exposure to rainfall or removal by wind. Secure the covering in place.

C. Geotextiles:
1. Geotextiles shall be delivered, stored and handled in accordance with [ASTM D 4873].
2. Geotextiles shall be kept dry and wrapped in waterproof wrapping such that it is protected from UV light and the elements during delivery and storage.
D. The Installer shall check all materials delivered to the site to ensure that the correct materials have been received and are in good condition prior to signing off on the manufacturer’s packing slip.

1.07 ENVIRONMENTAL REQUIREMENTS

A. Do not install in heavy rain or snow.
B. Do not install frozen Bedding Course, AquaPave® Engineered Joint Stabilizer or Sub-base materials.
C. Do not install on frozen soil subgrade.

1.08 MAINTENANCE

A. Extra materials: Provide [Specify area] [Specify percentage] additional material for use by owner for maintenance and repair.

PART 2 PRODUCTS

2.01 PAVING UNITS

A. Manufactured by Abbotsford Concrete Products
Phone: 1-800-663-4091 Fax: 1-604-852-4819

AquaPave® Standard: [Color]
221.5 mm x 110 mm x 80 mm thick

AquaPave® Venetian Series: all sizes are combined on one pallet. [Color]
Type 1 - 228 mm x 304 mm x 90 mm thick
Type 2 - 152 mm x 304 mm x 90 mm thick
Type 3 - 228 mm x 228 mm x 90 mm thick
Type 4 - 152 mm x 228 mm x 90 mm thick
Type 5 - 152 mm x 152 mm x 90 mm thick

AquaPave® Old Country Stone Type 1: [Color]
225 mm x 180 mm x 60 mm thick

AquaSlab® HydraPressed Slab: [Color]
457 mm x 457 mm x 50 mm thick

Note: ASTM C936/C936M-15 or CSA A231.2-14 applies to AquaPave® pavers. ASTM C1782/C1782M-16 or CSA A231.1-14 applies to AquaSlab® HydraPressed slabs.

B. Meet [ASTM C 936/C936M-15] [CSA A231.2-14] [CSA A231.1-14]. Freeze-thaw requirements may be waived in applications with no freeze-thaw conditions.
1. When testing 3-1/8 in. (80 mm) thick units for conformance to [C936/C936M-15], compressive strength tests shall be corrected by multiplying the results by 1.18 to equate the results to that from 2-3/8 in. (60 mm) thick pavers.
C. Color(s): [Specify from selection in Abbotsford Concrete Products literature].

2.02 CLEAR CRUSHED OPEN-GRADED BEDDING COURSE AND SUB-BASE MATERIALS

Note: The bedding and sub-base materials are an integral part of the AquaPave® system design. When designing an AquaPave® system, compliance with the following points must be strictly observed.
A. Aggregates to be clean, non-plastic, and free from deleterious or foreign matter.
B. Micro-Deval Degradation of less than 8%. Soft Aggregates such as Limestone cannot be used as they will lead to total system failure.
C. Percentage of angular and sub-angular particles greater than 90%. Do not use rounded river gravel. Base and bedding materials must be clear crushed open-graded aggregates.
D. Gradation criteria.
Note: D15 is the particle diameter size at which a percent of the particles are finer. For example, D15 is the particle size of the aggregate for which 15% of the particles are smaller and 85% are larger.
1. D15 upper and lower sub-base stone/D50 bedding stone < 5
2. D50 upper and lower sub-base stone/D50 bedding stone > 2

E. Crushed stone with 90% fractured faces, LA Abrasion <40 per ASTM C 131, minimum CBR of 80% per ASTM D 1883.
Note: The following gradations in Tables 1, 2 and 3 can be used for clear crushed open-graded bedding course and sub-bases. Check gradations against the above criteria.

Table 1
Grading Requirements for Clear Crushed Bedding Course (ASTM D 448 No. 8)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 mm (1/2 in.)</td>
<td>100</td>
</tr>
<tr>
<td>9.5 mm (3/8 in.)</td>
<td>85 to 100</td>
</tr>
<tr>
<td>4.75 mm (No. 4)</td>
<td>10 to 30</td>
</tr>
<tr>
<td>2.36 mm (No. 8)</td>
<td>0 to 10</td>
</tr>
<tr>
<td>1.16 mm (No. 16)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

Table 2
Grading Requirements for Clear Crushed Upper Sub-base (ASTM D 448 No. 56)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5 mm (1-1/2 in.)</td>
<td>100</td>
</tr>
<tr>
<td>25 mm (1 in.)</td>
<td>90 to 100</td>
</tr>
<tr>
<td>19 mm (3/4 in.)</td>
<td>85</td>
</tr>
<tr>
<td>12.5 mm (1/2 in.)</td>
<td>40 to 85</td>
</tr>
<tr>
<td>9.5 mm (3/8 in.)</td>
<td>0 to 15</td>
</tr>
<tr>
<td>4.75 mm (No. 4)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

Table 3
Grading Requirements for Clear Crushed Lower Sub-base (ASTM D 448 No. 2)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 mm (3 in.)</td>
<td>100</td>
</tr>
<tr>
<td>63 mm (2-1/2 in.)</td>
<td>90 to 100</td>
</tr>
<tr>
<td>50 mm (2 in.)</td>
<td>35 to 70</td>
</tr>
<tr>
<td>37.5 mm (1-1/2 in.)</td>
<td>0 to 15</td>
</tr>
<tr>
<td>19 mm (3/4 in.)</td>
<td>0 to 5</td>
</tr>
</tbody>
</table>

2.03 GEOTEXTILES AND GEOGRIDS

A. AP SCI1000 and Inbitex® Geotextiles and SC Intergrid® as supplied by: Abbotsford Concrete Products Phone: 1-800-663-4091

2.04 AquaPave® ENGINEERED JOINT STABILIZER

A. Pre-bagged AquaPave® Engineered Joint Stabilizer as supplied by: Abbotsford Concrete Products Phone: 1-800-663-4091

PART 3 EXECUTION

3.01 ACCEPTABLE INSTALLERS

A. [Specify acceptable paver installation subcontractors.]

3.02 EXAMINATION

Note: The elevations and surface tolerance of the soil subgrade determine the final surface elevations of concrete pavers. The paver installation contractor cannot correct deficiencies in excavation or grading of the soil subgrade with the addition of bedding materials. Therefore, the surface elevations of the soil subgrade should be checked and accepted by the General Contractor or designated party, with written certification presented to the paver installation subcontractor prior to starting work.

A. Acceptance of Site Verification of Conditions:
1. General Contractor shall inspect, accept and certify in writing to the paver installation subcontractor that site conditions meet specifications for the following items prior to installation of interlocking concrete pavers.
Note: Compaction of the soil subgrade may be necessary to achieve stability under vehicle loads. Compaction, however, will reduce the permeability of soils. In such cases, laboratory and on-site testing for density and soil permeability should be conducted. These can help establish a relationship between compacted density and anticipated design permeability after compaction. An experienced civil or geotechnical engineer familiar with local soil conditions should be consulted for determining project standards for the percentage of soil Proctor density and test methods for permeability.

When soil compaction is required, standard Proctor density per ASTM D 698 for pedestrian and driveway areas is recommended. Modified Proctor density per ASTM D 1557 is recommended for vehicular areas. Density and moisture should be checked in the field with a nuclear density gauge or other test methods for compliance to specifications. Stabilization of the soil and/or base material may be necessary with weak or continually saturated soils, or when subject to high wheel loads. These conditions may require the use of drain pipes within open-graded bases. Compaction on the "open aggregate base" for pedestrian and residential driveway areas, a minimum 97% standard Proctor density per ASTM D 698 is recommended. For vehicle and high traffic areas, a minimum 97% modified Proctor density per ASTM D 1557 is recommended.

3.03 PREPARATION

A. Verify that subgrade surface, base and sub-base materials are free from standing water, uniform, even, free of any organic material or sediment, debris, are ready for installation, prior to installation of AP SC1000 geotextile.

B. Edge Restraints:
 1. Verify location, type, installation and elevations of edge restraints around the perimeter to be paved. Ensure the side of the edge restraint adjacent to the paving is perpendicular to the edge restraint. This will require proper interlock eliminating possibility of creep, or a potential trip hazard.

C. Beginning of installation means acceptance of subgrade and edge restraints.

3.04 INSTALLATION

Note: The minimum slope of the soil subgrade is typically 0.5%. Actual slope of soil subgrade will depend on the drainage design and exfiltration type. Geotextile is placed on the compacted soil subgrade under the clear crushed open-graded lower sub-base. The geotextile is applied to the top surface of the pavers shall extend 13 mm (1/2 in.) above the final

3.05 FIELD QUALITY CONTROL

A. After sweeping the surface clean, check final elevations for conformance to the drawings.

B. The top surface of the pavers shall extend 13 mm (1/2 in.) above the final elevations after compaction to compensate for possible minor settlement (see 3.04 T).

C. Lippage: No greater than 3 mm (1/8 in.) difference in height between adjacent pavers.

D. Remove excess Inbitex® and AP SC1000 geotextile from the top edge of the pavers.

3.06 PROTECTION

A. After work in this Section is complete, the General Contractor shall be responsible for protecting the work from damage and sediment due to subsequent construction activity on the site.

B. Design consideration must be taken to ensure that soft landscaping is retained to prevent migration of softscape materials on to the AquaPave® surface. This will significantly help to maintain the integrity of the system.

End of section
Many water quality variables have been examined in AquaPave® paving, most produced during independent research by UK and overseas universities funded by Hanson Formpave. This data is vital in determining the safety of the rainwater. The table shows the main chemical and microbiological contaminants that have been screened for in AquaPave® water.

Also present is information on the authority producing the data and information on when it was produced.

AquaPave® water quality has been intensively analyzed by third party organizations. Although the water quality variables do not all meet drinking water standards, all are in line with surface water discharge standards. The results were also derived using only a geotextile in the upper layers of paving, with no further treatment.

To use the water in washing machines or for other domestic purposes, in line treatment such as filtration is recommended to remove suspended particles and some secondary water treatment such as UV sterilization.

<table>
<thead>
<tr>
<th>Research Authority</th>
<th>Contaminant</th>
<th>Concentration</th>
<th>Analysis method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coventry University 2008</td>
<td>Aluminum</td>
<td>0.100 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Arsenic</td>
<td>0.002 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Boron</td>
<td>Not detected</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Cadmium</td>
<td>Not detected</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Calcium</td>
<td>26.01 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Copper</td>
<td>0.007 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Iron</td>
<td>0.072 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Lead</td>
<td>0.001 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Lithium</td>
<td>0.008 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Magnesium</td>
<td>1.720 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Molybdenum</td>
<td>0.004 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Nickel</td>
<td>0.002 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Potassium</td>
<td>6.210 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Sodium</td>
<td>26.01 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Vanadium</td>
<td>0.013 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Zinc</td>
<td>0.007 mg/l</td>
<td>ICP-OES</td>
</tr>
<tr>
<td></td>
<td>Organic, nutrients and others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edinburgh University 2007</td>
<td>Ammonia</td>
<td>≤1.0 mg/l</td>
<td>Palintest kit</td>
</tr>
<tr>
<td>Severn Trent Laboratories 2008</td>
<td>Benzene</td>
<td>Undetectable</td>
<td>HPLC</td>
</tr>
<tr>
<td>Edinburgh University 2007</td>
<td>BOD</td>
<td>0.4-1.0 mg/l</td>
<td>BOD reactor</td>
</tr>
<tr>
<td></td>
<td>Dissolved oxygen</td>
<td>7.5-7.8 mg/l</td>
<td>O2 meter</td>
</tr>
<tr>
<td>Coventry University 2008</td>
<td>Electrical conductivity</td>
<td>≤350μS</td>
<td>EC meter</td>
</tr>
<tr>
<td>Severn Trent Laboratories 2008</td>
<td>Ethylenbenzene</td>
<td>Undetectable</td>
<td>HPLC</td>
</tr>
<tr>
<td>Edinburgh University 2007</td>
<td>Nitrate</td>
<td>≤5.50 mg/l</td>
<td>Palintest kit</td>
</tr>
<tr>
<td></td>
<td>Nitrate and Nitrite</td>
<td>≤10 mg/l</td>
<td>Palintest kit</td>
</tr>
<tr>
<td>Coventry University 2008</td>
<td>Oil and grease</td>
<td>≤1.0 mg/l</td>
<td>Solvent extraction</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>6.3-8.4</td>
<td>pH meter</td>
</tr>
<tr>
<td>Edinburgh University 2007</td>
<td>Phosphates</td>
<td>≤0.42 mg/l</td>
<td>Palintest kit</td>
</tr>
<tr>
<td>Coventry University 2008</td>
<td>Sulphates</td>
<td>≤ 5.0 mg/l</td>
<td>Titration</td>
</tr>
<tr>
<td>Edinburgh University 2007</td>
<td>Suspended solids</td>
<td>≤100 mg/l</td>
<td>Filtration</td>
</tr>
<tr>
<td>Severn Trent Laboratories 2008</td>
<td>Toluene</td>
<td>Undetectable</td>
<td>HPLC</td>
</tr>
<tr>
<td>Coventry University 2008</td>
<td>Total dissolved solids</td>
<td>≤200 mg/l</td>
<td>Filtration evaporation</td>
</tr>
<tr>
<td>Severn Trent Laboratories 2008</td>
<td>Xylene</td>
<td>Undetectable</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>Microbes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coventry University 2006/08</td>
<td>Acanthamoeba</td>
<td>0-5 /ml</td>
<td>Microscopy</td>
</tr>
<tr>
<td>Edinburgh University 2007</td>
<td>E. coli</td>
<td>< 1 /ml</td>
<td>Selective media</td>
</tr>
<tr>
<td></td>
<td>Enterococci</td>
<td>< 1 /ml</td>
<td>Selective media</td>
</tr>
<tr>
<td></td>
<td>Heterotrophs</td>
<td>78 /ml</td>
<td>Selective media</td>
</tr>
<tr>
<td>Severn Trent Laboratories 2007</td>
<td>Legionellae</td>
<td>3 key species</td>
<td>Undetectable</td>
</tr>
<tr>
<td>Edinburgh University 2007</td>
<td>Salmonellae & Shigellae</td>
<td>< 1 /ml</td>
<td>Selective media</td>
</tr>
</tbody>
</table>
Glossary of Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antecedent</td>
<td>A preceding occurrence or cause or event.</td>
</tr>
<tr>
<td>Bioremediation</td>
<td>Use of living organisms to clean up oil spills or remove other pollutants from soil, water, or wastewater.</td>
</tr>
<tr>
<td>CBR</td>
<td>California Bearing Ratio. An empirical test used for estimating the bearing value of highway sub-bases and subgrades.</td>
</tr>
<tr>
<td>Detention</td>
<td>An enforced delay.</td>
</tr>
<tr>
<td>Detention Pond</td>
<td>A pond that temporarily stores stormwater runoff and subsequently releases it at a slower rate than it is collected by the drainage facility system.</td>
</tr>
<tr>
<td>Eco-System</td>
<td>A system made up of a community of animals, plants, and bacteria and the physical and chemical environment with which it is interrelated.</td>
</tr>
<tr>
<td>Exfiltration</td>
<td>A gradual escape of fluid.</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy & Environmental Design. It is a voluntary rating system that is used to evaluate a project in relation to its use of “green building” technology.</td>
</tr>
<tr>
<td>Impervious</td>
<td>Incapable of being passed through or penetrated.</td>
</tr>
<tr>
<td>Inbitex®</td>
<td>Inbitex® is a thermally bonded nonwoven geotextile. Inbitex® has been specifically developed to optimize the cleansing of water entering the system. The various characteristics have been combined to create a unique geotextile that aids in the development of naturally occurring microbes and offers them refuge during periods of drought.</td>
</tr>
<tr>
<td>Infiltrate</td>
<td>To pass, or cause (a fluid) to pass, through small gaps or openings; filter.</td>
</tr>
<tr>
<td>Infiltration Rate</td>
<td>The rate, usually expressed in inches per hour, at which water percolates or moves down through the soil profile.</td>
</tr>
<tr>
<td>In-situ</td>
<td>To treat in place.</td>
</tr>
<tr>
<td>Non-Point Pollution Source</td>
<td>Pollution that enters any waters from any dispersed land based or water-based activities and does not result from discernible, confined, or discrete conveyances. Collectively, this is the largest source of stormwater pollution.</td>
</tr>
<tr>
<td>Observation Well</td>
<td>A perforated pipe inserted vertically into an open-graded base used to monitor its infiltration rate.</td>
</tr>
<tr>
<td>One Hundred Year Storm</td>
<td>A very unusual rainfall event that occurs once every 100 years and has a 1% chance of occurring in a given year.</td>
</tr>
<tr>
<td>One Year Storm</td>
<td>A rainfall event that occurs once a year or has a 100% chance of occurring in a given year.</td>
</tr>
<tr>
<td>Outfall</td>
<td>Point of water disposal to a stream, river, lake, tidewater, or artificial drain.</td>
</tr>
<tr>
<td>Peak</td>
<td>The maximum instantaneous rate of flow during a storm. Discharge usually in reference to a specific design storm event.</td>
</tr>
<tr>
<td>Pretreatment</td>
<td>The removal of materials such as solids, grit, grease, and scum from flows prior to physical, biological, or physical processes to improve treatability.</td>
</tr>
<tr>
<td>Permeable</td>
<td>Open to passage or penetration, especially by fluids.</td>
</tr>
<tr>
<td>PICP</td>
<td>Permeable Interlocking Concrete Pavements.</td>
</tr>
<tr>
<td>PSC</td>
<td>Permanent Stormwater Control Plan. A plan which includes permanent BMPs for the control of pollution from stormwater runoff after construction and/or land distributing activity has been completed.</td>
</tr>
<tr>
<td>Retention Pond</td>
<td>A pond that is either designed to hold water for a considerable length of time and then release it by evaporation, plant transpiration, and/or infiltration into the ground; or to hold surface and stormwater runoff for a short period of time and then release it to the surface and stormwater management system.</td>
</tr>
<tr>
<td>Void Ratio</td>
<td>Ratio of the volume of void space to the volume of solid particles in a given mass.</td>
</tr>
</tbody>
</table>

References:

4. Dr. Chris Jefferies and Fiona Napier, Urban Water Technology Centre, University of Albertay, Dundee.
5. Stephen Coup, Coventry University
6. John Argue of the Urban Water Resources Centre at the University of South Australia
7. Severn Trent Laboratories
8. Edinburgh University

Patents:

The system and products described in this brochure are covered by patents issued or pending in the following countries: Australia, Canada, European Patent Convention, Great Britain, New Zealand, Singapore, South Africa and the United States of America.

Abbotsford Concrete Products’ policy of continuous product development may necessitate changes to specifications without prior notification. All drawings and text are covered by copyright and may not be reproduced or transmitted in any form without prior consent from Abbotsford Concrete Products © 2010.
The Permeable Paving System That Doesn't Look Like One